Program:FE (All Branches)

Curriculum Scheme: Revised 2016

Examination: First Year Semester II

Course Code: FEC 202
Time: 1 hour

Course Name: Applied Physics -II
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Consider a multimode step index fibre with $\mu_{1}=1.53, \mu_{2}=1.50$ and $\lambda=1 \mu \mathrm{~m}$. If the core radius is $50 \mu \mathrm{~m}$, calculate the number of guided modes.
Option A:	5600
Option B:	4484
Option C:	3800
Option D:	6800
Q2.	In Newton's Ring experiments, the diameter of bright rings is proportional to
Option A:	Square root of Odd Natural numbers
Option B:	Natural Number
Option C:	Even Natural Number
Option D:	Square root of natural number
Q3.	Which of the following loss occurs inside the fibre?
Option A:	Radiative loss
Option B:	Scattering
Option C:	Absorption
Option D:	Attenuation
Q4.	Nanomaterials are the materials with at least one dimension measuring less than
Option A:	1 nm
Option B:	10 nm
Option C:	100 nm
Option D:	1000 nm
Q5.	A step-index fibre has a numerical aperture of 0.26, a core refractive index of 1.5 and a core diameter of 100 micrometer . Calculate the acceptance angle.
Option A:	$1.47{ }^{\circ}$
Option B:	$15.07{ }^{\circ}$
Option C:	2.18°
Option D:	24.15°
Q6.	Antireflection coating is helps in which case of the following?

Option A:	Minimizing the reflection of light from top surface
Option B:	To absorb and control the amount of light entering into the medium
Option C:	To allow maximum light to reflect from top surface
Option D:	To allow minimum light to enter into the medium
Q7.	The divergence of which quantity will be zero?
Option A:	E
Option B:	D
Option C:	H
Option D:	B
Q8.	An electron enters a uniform magnetic field $B=0.23 \times 10^{-2} \mathrm{wb} / \mathrm{m}^{2}$ at 45° angle to B. Determine pitch of helical path Assume electron speed to be $3 \times 10^{7} \mathrm{~m} / \mathrm{sec}$
Option A:	3.29 mm
Option B:	8.90 mm
Option C:	6.75 mm
Option D:	4.65 mm
Q9.	Which of the following laws do not form a Maxwell equation?
Option A:	Planck's law
Option B:	Gauss's Law
Option C:	Faraday's law
Option D:	Ampere's Law
Q10.	During TEM, a vacuum is created inside the
Option A:	room of operation
Option B:	specimen
Option C:	column
Option D:	ocular system
Q11.	Find the gradient of $\mathrm{t}=\mathrm{x} 2 \mathrm{y}+\mathrm{ez}$ at the point $\mathrm{p}(1,5,-2)$
Option A:	$\mathrm{i}+10 \mathrm{j}+0.135 \mathrm{k}$
Option B:	10i + $\mathrm{j}+\mathbf{0 . 1 3 5} \mathbf{k}$
Option C:	i $+0.135 \mathrm{j}+10 \mathrm{k}$
Option D:	$10 i+0.135 j+k$
Q12.	An electron is accelerated through a potential difference of 18 kv in a colur TV cathode ray tube. Calculate the kinetic energy of the electron
Option A:	$40 \times 10^{-16} \mathrm{~J}$
Option B:	$28.8 \times 10^{-16} \mathrm{~J}$
Option C:	$15.67 \times 10^{-16} \mathrm{~J}$
Option D:	$39.67 \times 10^{-16} \mathrm{~J}$
Q13.	Calculate the numerical aperture of an optical fibre whose core and cladding are made of materials of refractive index 1.6 and 1.5 respectively.
Option A:	0.55677

Option B:	55.77
Option C:	0.2458
Option D:	0.647852
Q14.	To find prominent diffraction , the size of diffraction object should be
Option A:	greater than wavelength of light used
Option B:	comparable to order of wavelength of light
Option C:	less than wavelength of light used
Option D:	none of these
Q15.	Which of the following is the application of nanotechnology to food science and technology?
Option A:	Agriculture
Option B:	Food safety and biosecurity
Option C:	Product development
Option D:	All of the above
Q16.	Determine the divergence of $\mathrm{F}=30 \mathrm{i}$ + 2 2xy j $~+~ 5 x z 2 ~ k ~ a t ~(1,1,-0.2) ~ a n d ~ s t a t e ~ t h e ~$ nature of the field.
Option A:	1, solenoidal
Option B:	0, solenoidal
Option C:	1, divergent
Option D:	0, divergent
Q17.	Which of the following theorem use the curl operation?
Option A:	Green's theorem
Option B:	Gauss Divergence theorem
Option C:	Stoke's theorem
Option D:	Maxwell equation
Q18.	Find the Maxwell law derived from Ampere law.
Option A:	Div(l) = H
Option B:	Div(H) = J
Option C:	Curl(H) = J
Option D:	Curl(B) = D
Q19.	Which of the following can be used for the generation of laser pulse?
Option A:	Ruby laser
Option B:	Carbon dioxide laser
Option C:	Helium neon laser
Option D:	Nd- YAG laser
column length	
	Image formation in electron microscope is based on

Option C:	differential scattering
Option D:	specimen size
Q21.	The condition for minima in Fraunhofer diffraction for single slit is asin θ m λ What is ' θ '?
Option A:	Angle of incidence of incident rays at the slit
Option B:	Angle at which diffracted rays strikes the screen
Option C:	Angle between slit and screen
Option D:	Angle of diffraction at which rays are diffracted at slit
Q22.	What is the principle of fibre optical communication?
Option A:	Frequency modulation
Option B:	Population inversion
Option C:	Total internal reflection
Option D:	Doppler Effect
Q23.	What are the approaches used in making nano systems?
Option A:	Top down
Option B:	Bottom up.
Option C:	Both a and b
Option D:	Neither a nor b.
Q24.	The fringe width and the angle of wedge are related to
Option A:	$\beta=\lambda / 2 \theta$
Option B:	$\theta=\lambda / 2 ~$
Option C:	$\beta=\lambda / \theta$
Option D:	$\lambda=\beta / 2 \theta$
Q25.	Find the Maxwell equation derived from Faraday's law.
Option A:	Div(H) $=$ J
Option B:	Div(D) $=$ I
Option C:	Curl(E) $=-\mathbf{d B} /$ dt
Option D:	Curl(B) $=-\mathrm{dH} /$ dt

